S.C.No.—2214305

B.C.A. EXAMINATION, Dec. 2024

(Third Semester)

(Main) (Batch 2022-23)

MATHEMATICAL FOUNDATION OF COMPUTING AND ANALYSIS 22USECBCA301

Time: 3 Hours Maximum Marks: 80

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

(Compulsory Question)

1. (a) If $A = \{(a, b), c\}$, find the power set P(A).

(5-1224-17/12)H-2214305(UG338)

P.T.O.

- (b) Let p and q be propositions. Using only the truth table decide whether $p \Leftrightarrow q$ does not imply $p \to q$ is:
 - (i) True
 - (ii) False.

2

- (c) Define Upper Triangular and Lower Triangular matrix with one example. 2
- (d) Write the following statements in a symbolic forms:

p: Indian fielding improves

q: Indian will win world cup.

2

- (c) The rank of the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ is : 2
 - (i) 4
 - (ii) 2
 - (iii) 1
 - (iv) 0
- (f) The total number of edges in a complete graph of n vertices is : 2
 - (i) *n*

- (ii) n/2
- (iii) $n^2 1$
- (iv) $\frac{n(n-1)}{2}$
- (g) State Euler's formula of Planar Graph. 2
- (h) What do you mean by Correlation Coefficient?

Unit I

2. (a) Prove de-Morgan's law:

(i)
$$(A \cup B)' = A' \cap B'$$

(ii)
$$(A \cup B)^c = A^c \cup B^c$$
.

(b) State whether or not each diagram defines
a function from A = {a, b, c} into
B = {x, y, z}.
8

Or

- 3. (a) Consider the set Z of integers. Define aRb by $b = a^r$ for some positive integer 'r', show that R is a partial order on Z i.e., R is:
 - (i) Reflexive
 - (ii) Anti symmetric
 - (iii) Transitive.
 - (b) Let $f: R \to R$ be defined by f(x) = 2x 3. Now f is one-to-one and onto; hence f has an inverse function f^{-1} . Find a formula for f^{-1} .

H-2214305(UG338)

Unit II

Show that propositions $\neg (p \land q)$ (a) 8

 $\neg p \lor q$ are logically equivalent.

Find the truth table of $\neg p \land q$. 8 (b)

Or

(a) Find the inverse of matrix:

$$B = \begin{bmatrix} 1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6 \end{bmatrix}.$$

(b) Given:

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \end{bmatrix}$$

and $B = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \end{bmatrix}$.

Find:

- (i) A + B
- (ii) 3 A and 4B.

8

Unit III

- 6. (a) Define Eulerian Graph and Hamilitonian Graphs.
 - (b) Define Binary Tree with example. 8

Or

- 7. (a) Define Regular and bipartite graph with example.
 - (b) Explain with exmaple, tree and rooted tree.

Unit IV

- 8. (a) Two cards are drawn at random from an ordinary deck of 52 cards. Find the prabability P that:
 - (i) Both are spades
 - (ii) One is a spade and one is a heart.
 - (b) A problem in statistics is given to 5 students their chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$. What is probability ? 8

9. (a) Define correlation coefficient from the following table:

Subject	Age x	Glucose Level y
1	43	99
2	21	65
3	25	79
4	42	75
5	57	87
6	59	81

(b) A box contains two white socks, two blue socks and two red socks. Two socks are drawn at random. Find the probability they card a match. (same colour) 8