- (b) If dim_FV = n and T ∈ A(V) has index of nilpotency also n, then prove that a basis of V can be found in which matrix of T, all of which entries are zero except on the super diagonal, where they are all 1's.
 8
- 9. (a) If S, T ∈ A(V) are nilpotent and ST = TS, then show that ST and S ± T are also nilpotent.
 8
 - (b) Let T ∈ A(V) has all its distinct characteristics roots in F. Prove that a basis of B can be found in which the matrix of T is of the Jordan Canonical form.
 8

(PG119) Roll No.

S.C.No.—M/22/18703101

M.Sc. EXAMINATION, 2022

(Batch 2018) (First Semester)

MATHEMATICS

18MTH101

Abstract Algebra-I

Time: 3 Hours Maximum Marks: 80

Note: Attempt *Five* questions in all. All questions carry equal marks.

- 1. (a) Prove that a commutative group having a composition series is finite.
 - (b) Give example of a solvable group which is not nilpotent.
 - (c) Find Sylow 2-subgroups of S_3 the symmetric group of degree 3.
 - (d) Prove that a simple solvable group has prime order.

- Define Invariant Subspace. Define invariants of transformation. Are they unique? Define Radical of an ideal. Define UFD. Unit I Prove that any finite *p*-group is solvable. Show that S_n is not solvable for n > 4.
 - State and prove Jordan-Holder Theorem. 8
 - Prove that a finite group is solvable if and only if its composition factors are cyclic groups of prime order. 8

linear

 $8 \times 2 = 16$

8

8

Unit II

- Prove that subgroup and homomorphic (a) image of a nilpotent group is nilpotent. 8
 - State and prove Sylow's First Theorem. 8

- **5.** Describe groups of order 15.
 - Let P be a Sylow p-subgroup of G and $x \in N(P)$ such that $O(x) = p^i$, for some i > 0. Then, $x \in P$. 8

-Unit III

- Let S and T be two ideals of a ring R, then prove that $S + T/S \cong T/S \cap T$.
 - Define Euclidean ring and prove that every Euclidean ring is a principal ideal domain. 8
- Every finite non-zero integral domain is a field. 8
 - Prove that an element in a UFD is prime iff it is irreducible. 8

Unit IV

Let $\dim_{\mathbf{F}}(V) = n$, and $T \in A(V)$ has all its characteristic roots in F. Prove that there is a basis of V in which matrix of T is triangular. 8

3

8