5. Show that a necessary and sufficient condition that *n* solutions φ_1 , φ_2 ,...., φ_n of differential equation :

 $\frac{d^n y}{dt^n} + a_1(t) \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n(t) y = 0,$

$$\overline{a_0}(t) \neq 0$$
 to be linearly dependent on an interval $\overline{}$ is that :

 $W(\varphi_1, \varphi_2,....,\varphi_n) = 0$ for all $t \in I$. Also show that every solution of differential equation is a suitable linear combination of n linearly independent solutions of given equation.

of the system and determine whether or not the point is stable:

$$\frac{dx}{dt} = 2x - 7y; \frac{dy}{dt} = 3x - 8y$$

(b)
$$\frac{dx}{dt} = 2x - 4y; \frac{dy}{dt} = 2x - 2y$$
.

(PG125)

Roll No.

S.C.No.—M/22/21703102

M.Sc. EXAMINATION, 2022

(Batch 2021) (First Semester)

MATHEMATICS

21MTH-102

Differential Equations and Calculus of Variations

Time: 3 Hours Maximum Marks: 80

Note: Attempt *Five* questions in all. All questions carry equal marks.

- 1. (a) State Sturm separation theorem.
 - (b) Define Lagrange's identity and Green's formula for second order.
 - (c) What do you mean by Pruffer transformation ?
 - (d) Define Fundamental Matrix.

- (e) State and define classification of critical points.
- (f) State Poincare-Bendixson theorem and define index of a critical point.
- (g) Define Brachistochrone and Isoperimetric problem with suitable examples.
- (h) State Euler's equation for one dependent function and its generalization to *n* dependent functions.
- 2. (a) Show that the function:

$$f(x, y) = x \sin y + y \cos x$$

satisfies Lipschitz condition in the rectangle D defined by $|x| \le a$, $|y| \le b$.

(b) Calculate the first three approximations to the solution of :

$$= \frac{dy}{dt} = t^2 + y^2; \ y(0) = 0$$

By Picard's method.

3. (a) State and prove Sturms comparison

theorem.

2

(b) Find the characteristic values and characteristic functions of the following Sturm-Liouville problem:

$$\frac{d^2y}{dx^2} + \lambda y = 0, \ y(0) = 0, \ y'(\pi) = 0.$$

4. (a) Show that the following equations is selfadjoint:

$$\frac{d^2x}{dt^2} + 3t^2 \frac{dx}{dt} + x = 0$$

$$\frac{d^2x}{dt^2} + \cos t \frac{dx}{dt} + 2x = 0.$$

(b) Show that $\sin (t^3)$ and $\cos (t^3)$ is a —fundamental set of the differential —equation:

$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + 9t^5x = 0$$

On every closed interval [a, b], where

3

7. (a) Solve the following system by Liapunov's method:

$$\frac{dx}{dt} = -x + y^2; \frac{dy}{dt} = -y + x^2$$

- (b) Write short note on Floquet theory and limit cycles.
- **8.** (a) State and prove first fundamental lemma of calculus of variations and also write the generalized form.
 - (b) Among all the curves joining two given points (x_0, y_0) and (x_1, y_1) , find the one which generates the surface of minimum area when rotated about the x-axis.
- 9. (a) Find the extremals of the functional $J[y, z] = \int_0^{\pi/2} (y'^2 + z'^2 + 2yz) dx \text{ with}$ boundary conditions y(0) = z(0) = 0, $y\left(\frac{\pi}{2}\right) = 1, z\left(\frac{\pi}{2}\right) = -1.$
 - (b) Find the geodesics of the circular cylinder $\vec{r} = (a\cos\phi, a\sin\phi, z)$.

5

7. (a) Solve the following system by Liapunov's method:

$$\frac{dx}{dt} = -x + y^2; \frac{dy}{dt} = -y + x^2$$

- (b) Write short note on Floquet theory and limit cycles.
- **8.** (a) State and prove first fundamental lemma of calculus of variations and also write the generalized form.
 - (b) Among all the curves joining two given points (x_0, y_0) and (x_1, y_1) , find the one which generates the surface of minimum area when rotated about the x-axis.
- 9. (a) Find the extremals of the functional $J[y, z] = \int_0^{\pi/2} (y'^2 + z'^2 + 2yz) dx \text{ with}$ boundary conditions y(0) = z(0) = 0, $y\left(\frac{\pi}{2}\right) = 1, z\left(\frac{\pi}{2}\right) = -1.$
 - (b) Find the geodesics of the circular cylinder $\vec{r} = (a\cos\phi, a\sin\phi, z)$.

5