throw with one dice for a prize of Rs. 4,400 which is to be won by the player who first throws "6". If B has the first throw, what are their respective expectations?

5. (a) Define Bionomial distribution. Obtain its mean and prove the following for moment:

$$\mu_{r+1} = pq \left[nr\mu_{r-1} + \frac{d\mu r}{dp} \right].$$

(b) A Poisson variate X is such that P(X=1)=2, P(X=2), find P(X=0), mean and variance. Also show that all cumulants are equal for Poisson distribution.

Unit III

6. (a) Prove that for a Normal distribution, mean deviation from mean is $\frac{4}{5}\sigma$ (approximately).

(PG128)

Roll No.

S.C.No.—M/22/21703105

M. Sc. EXAMINATION, 2022

(First Semester)

(Batch 2021)

MATHEMATICS

21MTH-105

Mathematical Statistics

Time: 3 Hours Maximum Marks: 80

Note: Attempt *Five* questions in all. All questions carry equal marks.

- **1.** (a) Define Trial, Independent events and Equally likely events.
 - (b) Define a continuous random variable along with *one* example.
 - (c) Find the expectation of the number on a dice when thrown.

- (d) Define geometric distribution. Obtain its M.G.F.
- (e) Obtain mean deviation about mean for uniform distribution.
- (f) State central limit theorem.
- (g) Define Consistency and Efficiency.
- (h) Explain types of errors. 8×2=16

Unit I

- 2. (a) For n events A_1 , A_2, A_n ; prove that $P\left(\bigcap_{i=1}^{n} A_i\right) \ge \sum_{i=1}^{n} P(A_i) (n-1).$
 - (b) A and B throw alternately with a pair of dice. One who first throws a total of 9 wins. What are their respective chances of winning if A starts the game?
 - (c) A problem in statistics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem is solved?

 6+5+5=16

2

- **3.** (a) State and prove Baye's theorem on probability.
 - (b) Define discrete random variable and sample space. A random variable X has the following probability function:

$$X: -2 -1 0 1 2 3$$

 $f(x): k 0.3 2k 0.2 0.1 3k$

Find the value of k, P(X < 0); $P(-2 < X \le 2)$. Also determine the distribution function of X.

Unit II

4. (a) The joint probability density function of two random variables X and Y is:

$$f(x,y) = \begin{cases} Kx(x-y), & 0 < x < 2; & -x < y < x \\ 0, & \text{elsewhere} \end{cases}$$

Find constant K and obtain the marginal distributions of X and Y, the conditional distribution of Y for X = x given.

3

(b) Define mathematical expectation and moment generating function. A and B

(b) Let X have the p.d.f.

$$f(x) = \begin{bmatrix} \theta e^{-\theta x}; & x > 0 \\ 0; & \text{otherwise} \end{bmatrix}$$

Show that if the positive part of x-axis is divided into intervals of equal length h starting at the origin, then the probabilities that X will lie in successive intervals form a G.P. with common ratio $e^{-\theta h}$.

- 7. (a) State and prove Weak law of large numbers.
 - (b) Show that for a Uniform distribution;

$$f(x) = \frac{1}{2a}$$
; $-a < x < a$. The M.G.F.

about origin is $\frac{\sinh at}{at}$. Also deduce the moments about mean for this distribution.

5

Unit IV

8. (a) Explain the following: Sufficiency, Null and Alternate Hypothesis, Critical region and level of significance.

- (b) What do you mean by unbiased estimator? Let X be distributed in Poisson form with parameter θ . Show that the unbiased estimator of $e^{-(K+1)\theta}$, K > 0 is $T(X) = (-K)^X$ so that T(X) < 0 if X is odd and T(X) > 0 if X is even.
- 9. (a) A survey of 320 families with 5 children each revealed the following distribution:

No. of girls: 0 1 2 3 4 5

5 4 3 2 1 0

No. of families: 14 56 110 88 40 12 Is this result consistent with the hypothesis that male and female births

are equally probable? (Given $\psi_{0.05}^2$ for

 $5d \cdot f \cdot = 11.07$).

No. of boys:

(b) The 9 items of a sample had the following values :

45, 47, 50, 52, 48, 47, 49, 53, 51

Does the mean of 9 items differ significantly from the assumed population mean 47.5? (Given t for 8 $d \cdot f \cdot$ at 5% level of significance is 2.31).

7