S.C.No.—21703201

M. Sc. EXAMINATION, 2023

(Second Semester)

(Main/Reappear/Improvement)

(2021/2022)

MATHEMATICS

21MTH-201

Abstract Algebra-II

Time: 3 Hours

Maximum Marks: 80

Note: Attempt any Five questions. All questions carry equal marks.

Unit I

- (a) Define simple and cyclic module.
 - (b) Prove that KerT is submodule of M, where T : M → N is a module homomorphism.

(5-0423-13/14)H-21703201(PG86)

P.T.O.

https://www.cbluonline.com

- (c) Give an example of a ring which is neither Noetherian and nor Artinion.
- (d) Prove that in an Artinion Commutative ring with unity, every ideal is maximal.
- (e) Find the splitting field of the polynomial $x^3 2$ over the field Q and it basis.
- (f) Show that Polynomial $x^4 + x^2 + 1$ is reducible or irreducible over Z.
- (g) Prove that G (K, F) is a subgroup of AutK.
- (h) Let [K : F]= 2 then K/F is a Normal extension. 8×2=16

Unit II

- (a) State and prove Fundamental theorem of module homomorphism.
 - (b) Prove that a R-module N is direct sum of its submodule N₁, N₂, N₃,.....N_m iff
 - (i) $N = N_1 + N_2 + N_3 + \dots + N_m$
 - (ii) $N_i \cap (N_1 + N_2 + N_3 + \dots + N_{i-1} + N_{i+1} + \dots + N_m) = \{0\}. 8$

H-21703201(PG86)

2

https://www.cbluonline.com

(b) State and prove the fundamental theorem
 of finite generated modules over a principal ideal domain.

Unit III

- (a) Let N be a R-module then N is Noetherian iff every non-empty family of R-submodules of N has a maximum element.
 - (b) Let $N_1 \times N_2 \times N_3 \times \times N_m$ be Artinion submodules of a module N_i then $\sum_{i=1}^m N_i$ is also Artinion.
- Show that if R is a Noetherian ring then the polynomial ring R [x] is so and conversely. 16

(\$403-1315)H-21703201(PG86) 3 P.T.O. https://www.cbluonline.com

Unit IV

- 6. (a) Prove that finite extension of finite extension is also a finite extension. 8
 - (b) Let K/F be any extension and a∈ K is algebraic over F. Let p(x)∈ F[x] be the minimal polynomial of a. Then:

$$F[x]$$
 $\langle p(x) \rangle \cong F(a) = F(a)$. 8

- 7. (a) Prove that $\sin m^0$ is an algebraic integer for every integer m.
 - (b) Show that √3 + √5 is algebraic over Q of degree 6. Also find out its splitting field degree.

Unit V

8. (a) A field F is finite iff F* = F - {0} is a multiplicative cyclic group.

H-21703201(PG86) 4 https://www.cbluonline.com

- (b) Let ch. F = p > 0. Prove that the element 'a' in some extension of F is separable iff F(ap) = F(a).
- State and prove Fundamental theorem of Galois Theory.