Roll No.

S.C.No.—21703204

M.Sc. EXAMINATION, 2023

(Main/Re-appear/Improvement)

(2021/2022)

(Second Semester)

MATHEMATICS

21MTH-204

Measure and Integration Theory

Time: 3 Hours Maximum Marks: 80

Note: Attempt any *Five* questions. All questions carry equal marks.

Unit I

1. (a) Prove that outer measure of null set is zero.

(3-423-22/1) H-21703204(PG92)

P.T.O.

https://www.cbluonline.com

- (b) Prove that countable intersection of measurable set is measurable.
- (c) Prove that set of type F_o are measurable
- (d) State Fatou's Lemma.
- (c) State Monotone Convergence Theorem.
- (f) State Vitali's Covering Lemma.
- (g) State Fundamental theorem of Differential Calculus.
- (h) State Jensen's inequality.

Unit II

- 2. (a) Prove that a finite union of measurable set is measurable.
 - (b) Let {E_i} be an infinite increasing sequence of measurable sets then prove that:

$$m\left(\bigcup_{i=1}^{\infty} \mathbf{E}_i\right) = \lim_{n \to \infty} \mathbf{E}_n$$

State and prove Egoroff's theorem.

H-21703204(PG92)

2

https://www.cbluonline.com

Unit III

- A. State and prove Lebesgue Dominated Convergence theorem.
- (5.\infty) Let f be bounded Riemann integrable function on [a, b], then prove that it is Lebesgue integrable and

$$R\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx.$$

(b) Evaluate the Lebesgue integral of the function $f:[0, 1] \rightarrow \mathbb{R}$:

$$f(x) = \begin{cases} \frac{1}{x^{1/3}} & \text{if } 0 < x \le 1\\ 0 & \text{if } x = 0 \end{cases}$$

Unit IV

- State and prove Jordan's decomposition theorem.
- 7. (a) Prove that if f is an absolutely continuous function on [a, b], f has a derivative a.e.

(3-413-22/2) H-21703204(PG92) 3 P.T.O. https://www.cbluonline.com

(b) If f and g are absolutely continuous function on [a, b], prove that : $\int_a^b f(t)g'(t)dt + \int_a^b f'(t)g(t)dt$ f(b)g(b) - f(a)g(b).

Unit V

- S. (a) Prove that a twice differentiable function φ is convex iff $\varphi'' \ge 0$ on (a, b).
 - (b) State and prove Holder's inequality.
- State and prove the Riesz-Fischer theorem.