S.C.No.—M/22/18703301

M. Sc. EXAMINATION, 2022

(Third Semester) (Batch 2018)

MATHEMATICS

18MTH-301

Partial Differential Equations

Time: 3 Hours Maximum Marks: 80

Note: Attempt Five questions in all. All questions carry equal marks.

- (a) Define Genesis of first order partial differential equations.
 - (b) State classification of first order differential equations.
 - (c) Define complete integral, general integral and singular integral of PDE.

6/02/5/9/20H-M/22/18703301(PG381) P.T.O.

- (d) State the partial differential equation governed by vibration of an infinite string.
- (e) Define wave equation, heat equation and Laplace equations.
- (f) What do you mean by Boundary value problems? Define.
- (g) Define Neumann problem for a circle.
- (h) State maximum principle.
- 2. (a) Show that the singular integral is also a solution of partial differential equation. Also show that $2z = (ax + y)^2 + b$ is a complete integral of $px + qy q^2 = 0$.
 - (b) Find the general solution of : $y^2p - xyq = x(z - 2y).$
- 3. (a) Find the complete integral of partial differential equation $z^2(p^2z^2+q^2)=1$ by Charpit's method.

H-M/22/18703301(PG381) 2

(b) Show that the equations :

$$f = xp - yq - x = 0;$$

$$g = x^2p + q - xz = 0$$

are compatible and find a one-parameter family of common solutions.

- 4. (a) Reduce the equation $u_{xx} + xu_{yy} = 0$ in the region $x \le 0$ into canonical form and solve if possible.
 - (b) Discuss the vibrations of semi-infinite string and solve the equation governing the motion of the string.
- Discuss the vibrations of a string of finite length and solve the corresponding governed equation by method of separation of variables.
- (a) Show that the solution of the Dirichlet problem, if it exists, is unique.
 - (b) State and prove the minimum principle
- 7. (a) State and find the solution of the Neumann Problem for the Upper Half Plane.

(b) What is the Dirichlet problem for a rectangle? Find its solution.

- 8. (a) Discuss the conduction for inifinite rod case and obtain the solution of the governed partial differential equation.
 - (b) State and solve the Heat conduction equation by Duhamel's principle.
- 9. (a) Show that the surfaces:

$$x^2 + y^2 + z^2 = cx^3$$

can form an equipotential family of surfaces, and find the general form of the potential function.

(b) State and prove Kelvin's Inversion theorem.

https://www.cbluonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से