S.C.No.—M/19/0702403/7405

M. Sc. EXAMINATION, May 2019

(Fourth Semester)

Main/Re-appear

Batch 2017/2016

PHYSICS

MSP403

Electronics-II

Time: 3 Hours]

[Maximum Marks . 20

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

- Λ . (a) Briefly describe pn junction photodiode.
 - (b) Differentiate between Analog and digital transducers with examples.
 - (c) Explain op-amp as non-inverting summing amplifier.
 - (d) Describe op-amp as sample and hold circuit. 4×4=16

Unit I

2.	Explain	the	following	
----	---------	-----	-----------	--

16

- (a) Light Emitting Diode
- (b) P-I-N Photodiode.
- (a) Explain pn junction photo diode and photo transistor and differentiate between the two in term of amplification of the input signal.
 - (b) Using diagram, discuss the process of amplification of photocurrent using photo multiplier tube.

Unit II

4. (a) Discuss temperature measurement using thermocouple. Which materials are used for the formation of thermocouple. What are the errors that occur that during the measurement using a thermocouple? 8

- (b) Explain how a ballistic galvanometer is used to measure flux changes occurring in magnetic circuits and indicate the essential conditions to be satisfied by the ballistic galvanometer chosen for this purpose.
- Explain using diagram, Seismic transducer for the measurement of vibrations. Give its theory.

Unit III

6. (a) Find the value of R if V₁ and V₂ are amplified by same amount. Assume op-amp to be ideal.

- (b) Draw the schematic diagram of an ideal OP-AMP with voltage series feedback in inverting and non-inverting mode and hence drive the expression for the closed loop gain in each case.
- 7. (a) Explain with circuit diagram how the emitter coupled differential amplifier can be made independent of the temperature.
 - (b) Find the output voltage as the function of time, assume A_V = ∞.
 6

Unit IV

- 8. (a) Describe temperature compensated logarithmic amplifier.
 - (b) Describe op-amp as second order high pass Butterworth filter and derive its relation for closed loop gain. 10
 - (z) Describe weight resistor type digital to analog converter along with its digitally control switch.
 - system and explain its operation. Which parameters determine the loop gain and hysteresis? Sketch the transfer characteristics and indicate the hysteresis.